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The drift velocity field describing spiral wave motion in an excitable medium subjected to a two-point
feedback control is derived and analyzed. Although for a small distance d between the two measuring points a
discrete set of circular shaped attractors are observed, an increase of d induces a sequence of global bifurca-
tions that destroy this attractor structure. These bifurcations result in the appearance of smooth unrestricted
lines with zero drift velocity, similarly to zero intensity lines under destructive interference in linear optics. The
existence of such unusual equilibrium manifolds is demonstrated analytically and confirmed by computations
with the Oregonator model as well as by experiments with the light-sensitive Belousov-Zhabotinsky reaction.
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Spiral waves represent a typical example of self-organized
processes in excitable media of quite different nature starting
from physics to chemistry and biology �1�. In addition to
observations and simulations of spiral waves in homoge-
neous and stationary media, external forcing is very effi-
ciently used as an “active” tool of study �2�. Moreover,
feedback-mediated forcing provides the opportunity to con-
trol spiral wave location, which is especially important for
such an application as the low voltage defibrillation of car-
diac tissue �3�.

In particular, if a feedback signal is determined as an in-
tegral of wave activity over a certain spatial domain within
an excitable medium, a spiral wave drift can be induced
�4–7�. In that case the resulting drift velocity can be found as
a sum of single drift vectors induced separately by each point
of the integration domain �8�. Note that a similar superposi-
tion principle is valid for linear waves and results in interfer-
ence patterns, often containing lines of destructive interfer-
ence. Hence we can expect the existence of unusual one-
dimensional equilibrium manifolds in a feedback-induced
drift velocity field.

In this paper we demonstrate the existence, clarify the
underlying physics and indicate basic consequences of an
interference in the drift velocity fields mediated by feedback
in nonlinear excitable media. To this aim we derive the drift
velocity field generated by a feedback taken from two mea-
suring points, perform numerical integrations of the Orego-
nator model, and confirm the obtained theoretical results by
the experiments carried out in the light-sensitive Belousov-
Zhabotinsky �BZ� reaction.

In order to introduce the feedback algorithm let us con-
sider the modified Oregonator model of a thin layer of the
light-sensitive BZ solution

�u

�t
= �2u +

1

�
�u − u2 − �fv + I�

u − q

u + q
� ,

�v
�t

= u − v . �1�

Here the variables u and v correspond to the concentrations
of the autocatalytic species HBrO2 and the oxidized form of

the catalyst, respectively. The parameters �=0.05, q=0.002,
and f =2.0 were fixed. The term I= I�t� describes the bromide
production proportional to the external illumination �9�. To
insert a feedback control the illumination intensity I�t� is
computed as

I�t� = I0 + kfb�B�t − �� − B0� , �2�

where � is the time delay, kfb is the feedback gain, and I0
=0.01 and B0=0.06 are constants. B�t� specifies the concen-
tration v�x ,y , t� averaged over the integration domain S of
area s,

B�t� =
1

s
�

S
v�x�,y�,t�dx�dy�. �3�

Let us assume first that kfb=0, i.e., the feedback loop is not
closed. Then I�t�= I0 and the value B�t� is determined by the
location of the spiral core center �x ,y�: B�t�=B�t �x ,y�. Be-
low rigidly rotating or slightly meandering spiral waves are
considered. In this case the value v�x� ,y� , t �x ,y� measured at
a site �x� ,y�� located sufficiently far away from the core
center oscillates at the period T�. Hence, the corresponding
feedback signal I�t �x ,y� determined from Eqs. �2� and �3� is
also periodic in time and its first Fourier component reads

I1�t�x,y� = kfbA�x,y�cos��t − �� − ��x,y�� , �4�

where �=2� /T�, and the amplitude A�x ,y� and the phase
��x ,y� are defined by the following expression:

A�x,y�ei��x,y� =
2

T�
�

0

T�

B�t�x,y�exp�i�t�dt . �5�

The periodic forcing I�t�= I1�t �x ,y� with kfb	0 applied to
system �1� induces a spiral wave drift �4–8�. If this drift is
slow, then the actual location of the core center �x ,y� deter-
mines its velocity V�x ,y�	kfbA�x ,y� and direction with re-
spect to the x axis


�x,y� = � + �� + ��x,y� . �6�

The constant � specifies the direction of the drift induced in
the case �=0 and �=0. For the model �1�–�3� with the pa-
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rameters indicated above �=−0.5 �8�. Hence the drift veloc-
ity field can be written as

dx

dt
= V�x,y�cos 
�x,y�,

dy

dt
= V�x,y�sin 
�x,y� . �7�

If the shape of a slightly meandering wave can be approxi-
mated by a counterclockwise rotating Archimedean spiral,
the first Fourier component of v�x� ,y� , t �x ,y� reads

v1�x�,y�,t�x,y� = vm cos�� + 2�r/ − �t� , �8�

where vm is a constant,  is the spiral wavelength, and r and
� are polar coordinates,

r = 
�x� − x�2 + �y� − y�2, � = arctan� y� − y

x� − x
� . �9�

Substituting Eqs. �3� and �8� into Eq. �5�, we get

A�x,y�ei��x,y� =
vm

s
�

S

exp�i��x�,y��x,y��dx�dy�, �10�

where

��x�,y��x,y� = � +
2�


r . �11�

It is important to stress that if the size of the domain S is
much smaller than the spiral wavelength , we get the lim-
iting case of one-point feedback control, which is specified
by Eqs. �9�–�11� with �x� ,y��= �0,0� �8�. In this case
��x ,y�=��0,0 , �x ,y� and Eq. �6� determines the drift direc-
tion 
�x ,y� for given values � and �. In the general case, the
resulting drift velocity field is derived using Eqs. �9�–�11�
and �6� as a sum of all drift vectors induced by single points
composing an integration domain of arbitrary shape.

Below the case of the two-point feedback is considered,
where the feedback signal is taken from two measuring
points �x+� ,y+��= �0,a� and �x−� ,y−��= �0,−a�. Substituting
these coordinates into Eq. �11�, we get two functions
�+�x ,y� and �−�x ,y� describing the influence of the feed-
back taken from each point separately

�±�x,y� = arctan�±a − y

− x
� +

2�


r±, �12�

where r±=
x2+ �a�y�2. The amplitude A�x ,y� and the phase
��x ,y� of the drift velocity field induced by the two points
together are determined from Eq. �10� as

A�x,y�ei��x,y� = �exp�i�+� + exp�i�−��vm/2, �13�

and then the drift angle 
�x ,y� follows from Eq. �6�.
It can be easily seen from Eq. �13� that the amplitude

A�x ,y� vanishes if

�+�x,y� − �−�x,y� = ��2m + 1� , �14�

where m is an integer. A solution of this equation specifies a
smooth line or a set of lines on the �x ,y� plane.

To analyze the obtained drift velocity field it is suitable to
choose the distance between two points d=2a as a control
parameter. If the distance d /�1, the drift velocity field is

very similar to that induced by the one-point feedback stud-
ied in �8�. It includes a set of circular-shaped attracting mani-
folds called resonance attractors �10�. This attractor structure
still exists for any d /�0.5. For example, the drift velocity
field obtained for d /=0.45 is shown in Fig. 1. The thick
solid line represents numerical results obtained for the model
�1�–�3� and illustrates the existence of a circular-shaped reso-
nance attractor in quantitative agreement with the drift ve-
locity field predicted analytically. However, in contrast to
one-point feedback, the magnitude of the drift vectors is not
a constant, but is very slow in the upper and lower parts of
the attractors. Moreover, the drift velocity vanishes at a
smooth curve connecting the measuring points. It is natural
to refer to such an unusual equilibrium manifold as a fixed
line, in analogy to well-studied fixed points.

The drift velocity field changes dramatically for 0.5
�d /�1.5. In this case there are three equilibrium mani-
folds, which are unrestricted in space. Thus, the circular-
shaped attractors existing for d /�0.5 are destroyed as
shown in Fig. 2. In accordance with the predicted velocity
field, the drift of a spiral wave core, computed for the Or-
egonator model, first follows an approximately circular tra-
jectory and then stops somewhere inside the medium. In the
case shown in Fig. 2�a� the drift practically stops relatively
far away from the fixed line, since the drift velocity is very
slow in a broad region surrounding this line. In Fig. 2�b�
variations in the velocity magnitude are rather sharp in the
vicinity of the fixed lines, therefore the drift stops practically
at the predicted lines.

We complemented our study by experiments performed
with the light-sensitive version of the BZ reaction using an
open-gel reactor �11�. The reaction takes place in a thin
�0.5 mm thickness� silicahydrogel layer of diameter 63 mm,
where the catalyst is immobilized. Premixed feeding solution
prepared as indicated in �7� is pumped continuously through
the reactor. To protect the active layer from stirring effects, it

FIG. 1. Drift velocity field determined by Eqs. �6� and �13� for
d /=0.45. The fixed line �thin solid� satisfies Eq. �14�. The thick
solid line represents the core center trajectory computed for the
model �1�–�3� with kfb=0.02 and �=0.
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is covered by an inactive gel layer not loaded with the cata-
lyst. The active layer is illuminated by a video projector
�Panasonic PT-L555E� controlled by a computer. Every one
second the images of the oxidation waves appearing in the
gel layer are detected in transmitted light by a charge-
coupled device �CCD� camera �Sony AVC D7CE� and digi-
tized for immediate processing by the computer. During the
same time step the signal controlling the projector can be
changed in accordance with the processed information to
close the feedback loop.

A single spiral wave is created in the gel disk by breaking
a wave front with a cold intense light spot. The location of
the spiral wave tip is defined online as the intersection point
of contour lines �0.6�amplitude� extracted from two digi-
tized images taken with time interval 2.0 s. An unperturbed
spiral has a wavelength 2.0 mm. Its tip describes a me-
andering trajectory containing about four lobes. The rotation

period measured far away from the symmetry center is T�

40 s.
In our experiments the feedback signal is determined in

accordance with Eq. �2�, where the value B�t� is the sum of
the intensities of the transmitted light measured at two points
located at the distance d=. The results of six experiments
with different initial locations of the spiral core are shown in
Fig. 3. In full agreement with the predicted drift velocity
field shown in Fig. 2�b�, the drift of spiral waves stops at the
fixed lines.

Thus, the velocity field for spiral core drift induced by the
two-point feedback is determined analytically by Eqs. �6�,
�7�, �12�, and �13�. It contains a set of fixed lines instead of
fixed points commonly discussed in the theory of structurally
stable dynamical systems �12�.

The analysis of Eq. �14� reveals that one fixed line passes
through the origin of the coordinate system and can be ap-
proximated here by y= / ��d�x, cf. Figs. 1 and 2. If d /
�0.5 this manifold connects two measuring points and is
restricted in space. New unrestricted equilibrium manifolds
appear at d=dn, where

dn = �0.5 + n�, n � 0. �15�

Close before these bifurcations occur, the fixed line in a vi-
cinity of the point �0,a� looks like a strongly curved loop
�see Fig. 1� with a top located approximately at

xm = /�2��, ym = xm/
2�1 − d/dn� . �16�

The ordinate ym grows with d and diverges exactly at these
bifurcation points. The loop breaks down and transforms into
two unrestricted lines. One line is x=0, and the second one
approaches x= /� for y→�, as illustrated in Fig. 2�a�.

FIG. 2. Drift velocity fields obtained from Eqs. �6� and �13� for
�a� d /=0.5, �b� d /=1.0. The fixed lines �thin solid� satisfy Eq.
�14�. Thick solids represent the trajectories of the core center com-
puted for the model �1�–�3� with kfb=0.02 and �=0.

FIG. 3. Trajectories of spiral wave tips observed in the experi-
ments with the light-sensitive BZ reaction. Two measuring points
are shown by black dots. Dashed lines depict fixed lines determined
numerically from Eq. �14�. Straight asymptotes correspond to ana-
lytical expressions �17�–�19�.
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Similar transformation occurs with the loop of the fixed line
starting at �0,−a�.

For d /	0.5 the fixed lines approach the straight asymp-
totes

y = �x − x0�tan � , �17�

d sin � = �0.5 + n� , �18�

x0 = /�2� sin �� . �19�

These asymptotes are in perfect agreement with the numeri-
cal solution of Eq. �14�, cf. Fig. 3.

There is a very close analogy between the unusual one-
dimensional equilibrium manifold reported here and the lines
of the destructive interference appearing due to linear super-
position of concentric waves emitted by two point sources.
Orientations of these lines also obey Eq. �18�. A shift x0
specified by Eq. �19� is due to an arctangent term in �12�,
specific for spiral-shaped waves.

Not only the location of the fixed lines, but also the drift
directions predicted by Eqs. �6� and �13� closely correspond
to numerical and experimental data. This is because the
Archimedean spiral approximation �8� is very precise, if r
	rA. For given parameters in the Oregonator model rA
0.2 �cf. Ref. �8��, i.e., it is small with respect to the radius
of the resonance attractor. If the core center is located too
close to a measuring point, strong deviations from the com-
puted drift velocity field can be expected up to the appear-
ance of the entrainment or asynchronous attractors �8�.

It follows from Eq. �13� that the phase ��x ,y� increases

when core center �x ,y� is shifted along a fixed line away
from the origin. Hence, due to Eq. �6�, the drift direction
rotates during such a shift. It can be seen also that the drift
direction jumps to the opposite one by crossing the fixed
line. Therefore, attracting and repelling segments alternate
along the fixed line with the spatial period .

In summary, the two-point feedback is proven to be very
suitable to study basic features of spiral wave drift induced
by a feedback control in excitable media. The results of the
analytical study are in agreement with the numerical and
experimental data and reveal the existence of unusual global
bifurcations leading to the appearance of unrestricted fixed
lines with zero drift velocity. It is important to take into
account such phenomena in future studies of feedback con-
trolled systems with other geometries of the integration do-
mains �e.g., elliptical or rectangular ones�.

Generally speaking, fixed lines are expected in structur-
ally unstable dynamical systems usually considered as unre-
alistic �12�. However, our study gives an example of a real
system, where unavoidable experimental noise does not
qualitatively alter the phase portrait of the model system �6�,
�7�, �12�, and �13�. This motivates future study of the pos-
sible behavior of a second order dynamical system near a
fixed line, which is a challenge for dynamic system theory
�13�. It is of interest also to find out other dynamical systems
with similar unusual properties, where interference patterns
determine the phase portrait.
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